Lesson 1
The Areas of Squares and Their Side Lengths
Let’s investigate the squares and their side lengths.
Problem 1
Find the area of each square. Each grid square represents 1 square unit.
![4 squares labeled A, B, C, D on grid.](https://cms-im.s3.amazonaws.com/k5m9ig9jRHAMjGvcyw4thCV7?response-content-disposition=inline%3B%20filename%3D%228-8.8.A1.PP.Imagexyz01.png%22%3B%20filename%2A%3DUTF-8%27%278-8.8.A1.PP.Imagexyz01.png&response-content-type=image%2Fpng&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAXQCCIHWF3XOEFOW4%2F20250125%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250125T085512Z&X-Amz-Expires=604800&X-Amz-SignedHeaders=host&X-Amz-Signature=8cc3ceeb6d7c1f2c49bafa9135da385b70f929d77d203a9ccbf4bcc98b6c4972)
Problem 2
Find the length of a side of a square if its area is:
- 81 square inches
- \(\frac{4}{25}\) cm2
- 0.49 square units
-
\(m^2\) square units
Problem 3
Find the area of a square if its side length is:
- 3 inches
- 7 units
- 100 cm
- 40 inches
- \(x\) units
Problem 4
Evaluate \((3.1 \times 10^4) \boldcdot (2 \times 10^6)\). Choose the correct answer:
\(5.1 \times 10^{10}\)
\(5.1 \times 10^{24}\)
\(6.2 \times 10^{10}\)
\(6.2 \times 10^{24}\)
Problem 5
Noah reads the problem, “Evaluate each expression, giving the answer in scientific notation.” The first problem part is: \(5.4 \times 10^5 + 2.3 \times 10^4\).
Noah says, “I can rewrite \(5.4 \times 10^5\) as \(54 \times 10^4\). Now I can add the numbers: \(54 \times 10^4 + 2.3 \times 10^4 = 56.3 \times 10^4\).”
Do you agree with Noah’s solution to the problem? Explain your reasoning.
Problem 6
Select all the expressions that are equivalent to \(3^8\).
\((3^2)^4\)
\(8^3\)
\(3 \boldcdot 3 \boldcdot 3 \boldcdot 3 \boldcdot 3 \boldcdot 3 \boldcdot 3 \boldcdot 3\)
\((3^4)^2\)
\(\frac{3^6}{3^{\text-2}}\)
\(3^6 \boldcdot 10^2\)